Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(4): pgae119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560529

RESUMO

The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya, eastern- (EEEV), and Venezuelan- (VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology.

2.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609165

RESUMO

The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya (CHIKV), eastern-(EEEV), and Venezuelan-(VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate (HS) impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology. Significance Statement: Previously, evidence of arbovirus-GAG interactions in vivo has been limited to associations between viral residues shown to promote enhanced GAG-binding phenotypes in vitro and in vivo phenotypes of viral dissemination and pathogenesis. By directly manipulating host GAG expression, we identified virion-GAG interactions in vivo and discovered a role for phagocyte-expressed GAGs in viral vascular clearance. Moreover, we observe species-specific differences in viral vascular clearance of enhanced GAG-binding virions between murine and avian hosts. These data suggest species-specific variation in GAG structure is a mechanism to distinguish amplifying from dead-end hosts for arbovirus transmission.

3.
Cell Rep ; 42(5): 112418, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37083332

RESUMO

Arboviruses are public health threats that cause explosive outbreaks. Major determinants of arbovirus transmission, geographic spread, and pathogenesis are the magnitude and duration of viremia in vertebrate hosts. Previously, we determined that multiple alphaviruses are cleared efficiently from murine circulation by the scavenger receptor MARCO (Macrophage receptor with collagenous structure). Here, we define biochemical features on chikungunya (CHIKV), o'nyong 'nyong (ONNV), and Ross River (RRV) viruses required for MARCO-dependent clearance in vivo. In vitro, MARCO expression promotes binding and internalization of CHIKV, ONNV, and RRV via the scavenger receptor cysteine-rich (SRCR) domain. Furthermore, we observe species-specific effects of the MARCO SRCR domain on CHIKV internalization, where those from known amplification hosts fail to promote CHIKV internalization. Consistent with this observation, CHIKV is inefficiently cleared from the circulation of rhesus macaques in contrast with mice. These findings suggest a role for MARCO in determining whether a vertebrate serves as an amplification or dead-end host following CHIKV infection.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Camundongos , Viremia , Macaca mulatta , Surtos de Doenças , Receptores Imunológicos
4.
PLoS Pathog ; 18(5): e1010474, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35511797

RESUMO

Many viruses utilize the lymphohematogenous route for dissemination; however, they may not freely use this highway unchecked. The reticuloendothelial system (RES) is an innate defense system that surveys circulating blood, recognizing and capturing viral particles. Examination of the literature shows that the bulk of viral clearance is mediated by the liver; however, the precise mechanism(s) mediating viral vascular clearance vary between viruses and, in many cases, remains poorly defined. Herein, we summarize what is known regarding the recognition and capture of virions from the circulation prior to the generation of a specific antibody response. We also discuss the consequences of viral capture on viral pathogenesis and the fate of the captor cell. Finally, this understudied topic has implications beyond viral pathogenesis, including effects on arbovirus ecology and the application of virus-vectored gene therapies.


Assuntos
Vírion , Vírus , Imunidade Inata , Vírus/genética
5.
mBio ; 12(6): e0159121, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781732

RESUMO

Toxoplasma gondii is an intracellular protozoan pathogen of humans that can cross the placenta and result in adverse pregnancy outcomes and long-term birth defects. The mechanisms used by T. gondii to cross the placenta are unknown, but complex interactions with the host immune response are likely to play a role in dictating infection outcomes during pregnancy. Prior work showed that T. gondii infection dramatically and specifically increases the secretion of the immunomodulatory chemokine CCL22 in human placental cells during infection. Given the important role of this chemokine during pregnancy, we hypothesized that CCL22 induction was driven by a specific T. gondii-secreted effector. Using a combination of bioinformatics and molecular genetics, we have now identified T. gondii GRA28 as the gene product required for CCL22 induction. GRA28 is secreted into the host cell, where it localizes to the nucleus, and deletion of the GRA28 gene results in reduced CCL22 placental cells as well as a human monocyte cell line. The impact of GRA28 on CCL22 production is also conserved in mouse immune and placental cells both in vitro and in vivo. Moreover, parasites lacking GRA28 are impaired in their ability to disseminate throughout the animal, suggesting a link between CCL22 induction and the ability of the parasite to cause disease. Overall, these data demonstrate a clear function for GRA28 in altering the immunomodulatory landscape during infection of both placental and peripheral immune cells and show a clear impact of this immunomodulation on infection outcome. IMPORTANCE Toxoplasma gondii is a globally ubiquitous pathogen that can cause severe disease in HIV/AIDS patients and can also cross the placenta and infect the developing fetus. We have found that placental and immune cells infected with T. gondii secrete significant amounts of a chemokine (called CCL22) that is critical for immune tolerance during pregnancy. In order to better understand whether this is a response by the host or a process that is driven by the parasite, we have identified a T. gondii gene that is absolutely required to induce CCL22 production in human cells, indicating that CCL22 production is a process driven almost entirely by the parasite rather than the host. Consistent with its role in immune tolerance, we also found that T. gondii parasites lacking this gene are less able to proliferate and disseminate throughout the host. Taken together, these data illustrate a direct relationship between CCL22 levels in the infected host and a key parasite effector and provide an interesting example of how T. gondii can directly modulate host signaling pathways in order to facilitate its growth and dissemination.


Assuntos
Quimiocina CCL22/metabolismo , Placenta/parasitologia , Complicações Parasitárias na Gravidez/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Animais , Quimiocina CCL22/genética , Feminino , Interações Hospedeiro-Parasita , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Placenta/metabolismo , Gravidez , Complicações Parasitárias na Gravidez/genética , Complicações Parasitárias na Gravidez/parasitologia , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/parasitologia
6.
Sci Immunol ; 4(31)2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635356

RESUMO

Pregnancy poses an immunological challenge because a genetically distinct (nonself) fetus must be supported within the pregnant female for the required gestational period. Placentation, or the establishment of the fetally derived placenta, is a common strategy used by eutherian mammals to protect the fetus and promote its growth. However, the substantial morphological differences of the placental architecture among species suggest that the process of placentation results from convergent evolution. Although there are considerable similarities in placental function across placental mammals, there are important differences that arise owing to species-specific immunological (and other biological) constraints. This Review focuses on the immunological similarities and differences that occur at the maternal-fetal interface in the context of human and mouse pregnancies. We discuss how the decidua and placenta of these different species form key immunological barriers that sustain maternal tolerance yet generate innate immune responses that prevent microbial infections.


Assuntos
Decídua/imunologia , Placenta/imunologia , Gravidez/imunologia , Animais , Feminino , Humanos , Tolerância Imunológica , Infecções/imunologia , Leucócitos/imunologia
7.
mBio ; 9(1)2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317509

RESUMO

Toxoplasma gondii is a major source of congenital disease worldwide, but the cellular and molecular factors associated with its vertical transmission are largely unknown. In humans, the placenta forms the key interface between the maternal and fetal compartments and forms the primary barrier that restricts the hematogenous spread of microorganisms. Here, we utilized primary human trophoblast (PHT) cells isolated from full-term placentas and human midgestation chorionic villous explants to determine the mechanisms by which human trophoblasts restrict and respond to T. gondii infection. We show that placental syncytiotrophoblasts, multinucleated cells that are in direct contact with maternal blood, restrict T. gondii infection at two distinct stages of the parasite lytic cycle-at the time of attachment and also during intracellular replication. Utilizing comparative transcriptome sequencing (RNA-seq) transcriptional profiling, we also show that human placental trophoblasts from both the second and third trimesters respond uniquely to T. gondii infection compared to trophoblast cell lines, typified by the upregulation of several immunity-related genes. One of the most differentially induced genes was the chemokine CCL22, which relies on the secretion of a parasite effector(s) either during or after invasion for its induction. Collectively, our findings provide new insights into the mechanisms by which the human placenta restricts the vertical transmission of T. gondii at early and late stages of human pregnancy and demonstrate the existence of at least two interferon-independent pathways that restrict T. gondii access to the fetal compartment.IMPORTANCEToxoplasma gondii is a major source of congenital disease worldwide and must breach the placental barrier to be transmitted from maternal blood to the developing fetus. The events associated with the vertical transmission of T. gondii are largely unknown. Here, we show that primary human syncytiotrophoblasts, the fetus-derived cells that comprise the primary placental barrier, restrict T. gondii infection at two distinct stages of the parasite life cycle and respond to infection by inducing a unique immunomodulatory transcriptional profile. Collectively, our findings provide important insights into the mechanisms by which human syncytiotrophoblasts restrict T. gondii infection at early and late stages of human pregnancy, identify both permissive and resistant human placental cell types, and identify the placenta-enriched signaling pathways induced in response to infection.


Assuntos
Quimiocinas/metabolismo , Placenta/imunologia , Placenta/parasitologia , Toxoplasma/imunologia , Trofoblastos/imunologia , Trofoblastos/parasitologia , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Humanos , Técnicas de Cultura de Órgãos , Gravidez , Toxoplasma/crescimento & desenvolvimento
8.
Vet Sci ; 4(1)2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29056670

RESUMO

Bovine herpesvirus (BoHV) type 1 is an important agricultural pathogen that infects cattle and other ruminants worldwide. Acute infection of the oro-respiratory tract leads to immune suppression and allows commensal bacteria to infect an otherwise healthy lower respiratory tract. This condition is known as the Bovine Respiratory Disease (BRD). BoHV-1 latently infects the host for life and periodical stress events re-initiate BRD, translating into high morbidity and large economic losses. To gain a better understanding of the biology of BoHV-1 and the disease it causes, we elucidated the protein composition of extracellular virions using liquid chromatography-mass spectrometry analysis. We detected 33 viral proteins, including the expected proteins of the nucleocapsid and envelope as well as other regulatory proteins present in the viral tegument. In addition to viral proteins, we have also identified packaged proteins of host origin. This constitutes the first proteomic characterization of the BoHV virion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA